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AN APPROXIMATE KINETIC TREATMENT OF SLOW- 
INITIATED LIVING POLYMERIZATION. 1. FIRST-ORDER 
INITIATION AND PROPAGATION 

ELENA CEAUSESCU, R. BORDEIANU, ANCA ION,* E. BUZDUGAN, 
RODICA STANCU, IRINA CERCHEZ, and P. GHIOCA 

Chemical Research Institute ICECHIM 
Spl. Independentei 202,77208 Bucharest, Romania 

ABSTRACT 

A new method for deriving the initiation rate constant for a slow- 
initiated living polymerization process in which all reactions are first 
order with respect to all participants is presented. The method is based 
upon an approximate analytical solution of the set of differential equa- 
tions modeling this class of processes. The solution is found by asymp- 
totic expansion of the unknown functions, using a dimensionless param- 
eter vhich characterizes the process. 

INTRODUCTION 

The kinetics of slow-initiated living polymerization have been investigated 
quite extensively [ 1-10], one of the main problems being that of determining 
the reaction rate constants. This problem does not have a simple solution, 
not even in the simple case of a polymerization process in which both initia- 
tion and propagation are first order with respect to all participants (the 
methods already in use do not always predict the reaction rate constants with 
a satisfactory precision [ 141). An accurate determination of the reaction 
rate constants would require knowledge of an exact analytical solution of the 
set of differential equations modeling the process. Since such a solution can- 
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1540 CEAUSESCU ET AL. 

not be found [9] ,  we have derived an approximate analytical solution of this 
set which allows us to calculate the reaction rate constants. 

THEORY 

The process of a slow-initiated living polymerization in which both initia- 
tion and propagation are first order with respect to monomer concentration 
and catalyst and active center concentrations, respectively, is described by 

I -t M P*, initiation; 

P* t M - polymer, propagation; 

where I stands for initiator (or catalyst), M is the monomer, and P* is an ac- 
tive center. The corresponding set of differential equations is 

&[I] / d t =  -ki[M] [ I ] ,  

d [M]/d t=-kp[P]  [MI -ki[I] [MI. 

The initial conditions are [I] It=,, = [I] o ,  [MI Ir=o = [MI o ;  and from a simple 
catalyst balance: [P*] = [I] - [I]. 

The assumption of a slow-initiated polymerization is described by the ki 
<< kp  inequality, which enables us to neglect the term kj[I] [MI in the sec- 
ond equation of Set (1), which becomes 

with [MI I t = O  = [MI and [P*] I t = O  = 0. 
Let us define the following dimensionless parameters: m = [MI /[MI o ,  

In fast-initiated polymerizations in which propagation is first-order with 
respect to monomer concentration, plots of In ([MI /[MI o )  against time 
yield straight lines. It is thus useful to substitute 4 = -In m. We shall further 
make use of the dimensionless parameter E = kp [I] o/(ki[M] o ) ,  first suggested 
by Pepper [8].  With these transformations, the set of Eq. (2) may be written 

P =  [ p * l / [ I I o , ~ = k i [ M ] o r .  
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APPROXlMATE KINETIC TREATMENT. i 1541 

If E < 1, the method of regular perturbations [ 111 is applicable. In order 
to do this, p and q are expanded in a power series of E :  

The expansion of exp (-q(T,f)) in a Taylor series leads to 

which, by combining with Eq. (5) reduces to 

Substituting Eqs. (4)-(6) into Eq. (3), we obtain 

Setting the corresponding terms in E equal, a series of differential equa- 
tions is obtained which, successively solved, yieldsp,, p l ,  . . . , and qO,q1, 
. . . , respectively, with the initial conditions pn(0)  = 0 and qn(0) = 0 (see 
Appendix 1): 
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1542 CEAUSESCU ET AL. 

p1(7)= [exp(-7)-(1/2)T2 + T -  13 exp(-T), (1  1) 

q2(7)=-(1/2)[1 + e x p ( - ~ ) ( e x p ( - ~ ) - ~ ~  -2 ) l .  (12) 

The first approximation of ~ ( T , E )  is taken as 

qI(7,e) = E(T + exp (-7) - l), (13) 

and the second approximation as 

qII(7,e) = E(T + exp (-7) - 1)  - (ID)€’ [ 1 + exp (-.r)(exp (-7) - 7’ - 2)] . 
(14) 

To compare the approximations with the “accurate” solution of Set (3), 
the set was numerically integrated with a Runge-Kutta routine for e ranging 
from 0.1 to 1 and monomer conversions up to 95%. The results, presented in 
Fig. 1 as first-order plots, show that, as expected, the predictions of the ap- 
proximate solutions diverge increasingly from the numerical solution with in- 
creasing conversion. For E = 0.1, all three solutions are virtually identical up 
to monomer conversions above 95%. The dependence of relative error on 
conversion and on E is illustrated in Fig. 2,  which confirms the superior accu- 
racy of the second approximation. 

In terms of real time, the two approximations may be written as follows: 

Both functions at infinity approach asymptotes of slope kp [I] ; the 
asymptote of q ~ ( t )  is 

and that of qII(t) is 
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APPROXIMATE KINETIC TREATMENT. 1 1543 

As pointed out by Litt [ I ]  and Pepper [ 8 ]  , the actual slope of the asymp- 
tote of 4 is kp [I] of, wherefis the value of p at infinity and can be calculated 
by solving the equation 

-In (1 -8 -f= I/€. (19) 

Sincefgets closer to unity as E tends toward zero, the agreement of the 
exact solution of the Set (2 )  with 41 and 411 becomes increasingly better the 
smaller the value of E. This also implies that the usual method of finding kp 
from the final slope of a(-ln( 1 - x)) vs time plots gives good approximations 
of kp  only when e is small [ 81 . 

For approximating ki, we start from the fact that, for small E'S,  the slopes 
of the asymptotes of 411 and q tend to become equal and also that the deriva- 
tives of 411 and 4 become relatively soon (at low conversions) almost equal 
with the slopes of the respective asymptotes. It follows that the two asymp- 
totes are, at least for the initial portion of the curves, very close to each other; 
hence, their intercepts on the abscissa are also close. The above reasoning 
applies for 41 as well, if E < 0.1. 

The intercepts of the asymptotes of 41 and 411 are 

Hence, as t l  x t2 = to ( t o  the intercept of the asymptote of 4), 

ki l / ( to  [MI  0 )  k: (22)  

ki [ 1 + ( 1  + 2tokp[I] o ) ' '2 ]  / (2to [MI 0 )  f k?'. (23)  

Mention should be made that Eq. (22)  has been previously derived [12]  
by implicitly assuming constant monomer concentration during propagation. 
This assumption is chemically untenable and also leads to an incorrect mathe- 
matical treatment. 

In order to determine to from experimental data, the following methods 
can be used: (a) If the first-order plot of q shows an extended linear portion, 
linear regression may be applied, approximating to as the intercept of the ob- 
tained straight line. (b) Data may be fitted with a function of properties 
similar to -In ( 1  - x), i.e., passing through the origin, increasing, convex, and 
approaching an asymptote as r-. The intercept on the abscissa of the asymp- 
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la 

L 

0 1  3 5 7 2  

Ib 

FIG. 1. Plots of the functions 4 (= -In ( 1 - x), where x is the monomer 
conversion),qI, and 411 for three values of E :  (a) e = 0.3, (b) E = 0.5, (c) 
E = 0.9. 
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APPROXIMATE KINETIC TREATMENT. I 1545 

Ic 

FIG, 1 (continued) 
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, E =1 

b 

l o -  

8 -  

6 -  

4 -  

L E = 0 . 2  
n ~ E=0.1 * 

x w o  ) 
U 

10 20 30 LO 50 60 70 80 90 

2a 

q,- 9 
100 L 

9 

E =Q5 

2 -  

0 
> E = l  I €=01 

I - 
10 20 30 LO 50 60 70 80 90 x(%) 

2b 

FIG. 2. Relative error of functions q1 and q (Fig. 2a) and of functions 
411 and 4 (Fig. 2b) for some values of e ranging from 0.1 to 1. 
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APPROXIMATE KINETIC TREATMENT. I 1547 

tote of that function will approximate to .  For this procedure we have rather 
arbitrarily chosen a hyperbolic branch with the apex at the origin: 

and the function 

The problem is that, for unknown ki and kp,  one cannot evaluate E a priori, 
so that the question arises whether Eqs. (1 5) and (16) derived for E < 1 are 
usable or not. However, it can be shown that the same equations are valid 
even if e > 1. The mathematical treatment is rather complicated and is pre- 
sented only schematically in Appendix 2. More precisely, it can be shown 
that, for any E ,  a conversion interval exists in which Eq. (16) constitutes a 
good approximation of the exact solution 4(t)  at a given degree of precision. 
The maximum monomer conversion for which this approximation still holds 
decreases with increasing E .  Even for E >> 1, this conversion is relatively high. 
Thus, for E = 1000 the relative error is less than 5% for conversions up to 60% 
(Fig. 3). In practice, such large values of e are seldom encountered (solving 

E-2  

E =10 

E-100 

10 \ &=lo00 
c 

10 20 30 40 50 60 70 80 ( x O/O) 

FIG. 3.  Relative error of functions 411 and q for very high values of E .  
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1548 CEAUSESCU ET AL. 

Eq. 19 for E = 1000 givesf< 0.04, which means that the initiator consump- 
tion is less than 4%). 

In general, the following method is to be applied: The experimental data 
obtained in a polymerization are treated as above to determine kp and kj. If 
these values lead to  small standard deviations of 411 from the experimental 
points, then they are by themselves good approximations for the reaction 
rate constants. If not, it follows that E is very large and the obtained values 
for kp and kj should be regarded as indicating only the order of magnitude 
of the actual rate constants. The knowledge of these orders of magnitude 
will enable the researcher to choose the ratio [I] o/[M] required to obtain 
a small E (= kp [I] o/(kj[M] o)). With these initial concentrations, a second 
polymerization is performed, from whose results good approximations for 
kp and ki will be obtained. 

However, if only one set of experimental data is available and e is very 
large, one can still determine the rate constants by computer fitting of the 
data with function 411 (much faster than fitting with a numerical solution). 
The computer fitting method has the further advantage of yielding values 
for kp much more accurate than those obtained from the final slope. 

in this case one should fit with 411 only data corresponding to monomer 
conversions below 75%. 

Since, for E >> 1, problems related to the shape of the function 411 arise, 

APPLICATION TO EXPERIMENTAL DATA 

In order to estimate the degree of approximation when kj is calculated 
with Eqs. (22)  and (23), the cationic polymerization of N-vinylcarbazole 
initiated with triphenylmethyl hexafluoroantimonate was considered. For 
this reaction at 2OoC, kj = 130 L*mol-' .s-' and kp = 5 X lo4 L-mol-' a s - '  

Set ( 2 )  was numerically integrated for [MI = 0.04 mo1.L-' and variable 
[I] 
used to obtain, by linear regression and fitting with the Functions (24) and 
(25) ,  the intercept to which was substituted in (22)  and (23) to provide the 
approximate values for ki (ki' and ki"). These are presented in Table 1, kp 
being calculated from the final slope. For small values of E ,  the various 
kj' and kj" values are very close to each other. For high values of E ,  there 
are great differences between these constants, and it is necessary to select 
the best approximation for ki from among them. In order to do this, we 
substitute the constants kp and ki' in 4 ,  and kp  and kj" in 411 and calculate 

~ 3 1 .  

corresponding to E = 0.1,. . . , 1; E =  2 ;  and E = 10. The results were 
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APPROXIMATE KINETIC TREATMENT. I 1549 

TABLE 1. Approximate Values of kp and ki Obtained by Processing the 
Data Resulting from Numerical Integration of Set (2) with kp = 50 000 
L-mol-' a s - '  and ki = 130 L-mol-' .s-' 

Fitting with Fitting with 
Linear regression Function (24) Function (25) 

kP k) ktl kp kl kjrr kp ki' k{' 

0.1 50020 121 127 50076 115 122 50 171 109 115 

0.2 49787 118 129 50062 105 117 50401 94 105 

0.3 48986 123 140 49562 103 120 50276 86 103 

0.4 47928 128 148 48723 104 125 50095 83 104 

0.5 46084 145 170 47646 108 133 48528 90 114 

0.6 44779 153 183 46537 112 141 48 120 87 115 

0.7 43596 163 195 45416 116 148 48609 80 :12 

0.8 42734 166 202 44431 120 156 47801 82 116 

0.9 41474 176 215 43478 123 162 46851 84 121 

1 40808 178 215 42587 126 168 45658 87 128 

2 33212 241 308 35900 157 223 40725 92 155 

10 17020 573 744 20417 303 473 27 178 135 279 

the standard deviation of 41 and 411 from the experimental data. We select 
kp and kj which minimize the standard deviation. 

and Ryan [ 141 on the polymerization of butyl cyanoacrylate with Ph3P in 
THF at 20°C ([MI = 0.0065 mol-L-', [I] = 2.6 X mol-L-'). The 
hyperbola gave the best fit, yielding kp = 2.8 X lo5 L-mol-' .s-' and ki = 
104 L-mol-' -s-l ,  for which the standard deviation was u = 0.062 (see 
Fig. 4). 

To test the method of fitting the data with 411, we used the results of the 
numerical integration of Set (2) with kp = 50 000 L*mol-' *s-' , kj = 130 
L-mol-'*s-', [MIo =0.04mol.L-', and [ I I O  selected toget E =  10(avery 

We illustrate this method by the treatment of the data reported by Pepper 
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1550 CEAUSESCU ET AL. 

FIG. 4. Experimental curve (-) obtained for the polymerization of butyl 
cyanoacrylate with Ph,P in THF at 2OoC [ 141 compared to the second-order 
approximation, 411 (- --). 

large E). As starting values for the fitting program we used kp = 20 417 
L.mo1-I .s-l and kj = 473 L-mol-' *s-', which were chosen rather arbitrarily 
from those in the last row of Table 1. The values yielded by the fitting pro- 
gram were kp = 56 030 L.mo1-I s ~ - ~  and ki= 1 16 L*mol-' *s-' .  

CONCLUSIONS 

For usual values of E, the approximate solutions we have derived are in 
good agreement with that obtained by numerical integration; hence the cal- 
culated constants are close to their actual values. Even when f is unusually 
large, both constants kp  and ki may be determined by computer fitting of 
experimental data with the second-order approximate analytical solution. 
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APPENDIX 1 

Set (7) can be written 

The initial conditions for pn and qn are pn(0) = 0 and qn(0) = 0 for any 

From Relation (Al . l )2 ,  by equating the free terms it follows that 
n E N .  

which, together with the initial condition, gives 

By the same method, from ( A l . l ) l ,  we obtain 

(A1.2) and the initial conditions for p o  are used to get 

p o ( 7 )  = 1 - exp (-7). 

Identifying the E terms in (Al.1)2, we come to 

and 

q1(7) = 7 + exp (-7) - 1. 

The same procedure applied to Eq. (Al .  1)1 leads to 

(Al.2) 

(A1.4) 
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1552 CEAUSESCU ET AL. 

After performing the necessary substitutions and solving the differential 
equation, we get 

P ~ ( T )  = [exp (-7) - 0.57~ + 7 - I ]  exp (-TI. (A1.5) 

By equating the e2 terms in (Al. 1)2, the equation 

is obtained and it follows that 

q2(7) 3: - 1/2[ 1 + (exp (-7) - r2 - 2) exp ( -7 ) ] .  (A 1.6) 

APPENDIX 2 

Set (2) is rendered dimensionless by using instead of the actual time t ,  the 
dimensionless time 7= kj[I] o t .  With p =  [I] o/[M] o ,  the set becomes 

I.ldpldF= (1 - P I  exp (4 

Since normally p << 1, the problem may be solved by the method of singu- 
lar perturbations [ 113 . The process by which the approximate solution is 
found is rather tedious, and since it closely follows the general algorithm per- 
sented in Ref. 11, we shall not present it here. Suffice it to say that the second 
approximation of q obtained by this method is 

where T = F/p = kj [MI ot. 
Substituting for real time, one obtains Eq. (16). 
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